skip to main content


Search for: All records

Creators/Authors contains: "Peisert, Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fast and safe voltage regulation algorithms can serve as fundamental schemes for achieving a high level of renewable penetration in modern distribution power grids. Faced with uncertain or even unknown distribution grid models and fast changing power injections, model-free deep reinforcement learning (DRL) algorithms have been proposed to find the reactive power injections for inverters while optimizing the voltage profiles. However, such data-driven controllers can not guarantee the satisfaction of the hard operational constraints, such as maintaining voltage profiles within a certain range of the nominal value. To this end, we propose SAVER: SAfe Voltage Regulator, which is composed of an RL learner and a specifically designed, computationally efficient safety projection layer. SAVER provides a plug-and-play interface for a set of DRL algorithms that guarantees the system voltages are within safe bounds. Numerical simulations on real-world data validate the performance of the proposed algorithm. 
    more » « less
  2. Cycle-level architectural simulation of Trusted Execution Environments (TEEs) can enable extensive design space exploration of these secure architectures. Existing architectural simulators which support TEEs are either based on hardware-level implementations or abstract analytic models. In this paper, we describe the implementation of the gem5 models necessary to run and evaluate the RISCV-based open source TEE, Keystone, and we discuss how this simulation environment opens new avenues for designing and studying these trusted environments. We show that the Keystone simulations on gem5 exhibit similar performance as the previous hardware evaluations of Keystone. We also describe three simple example use cases (understanding the reason of trusted execution slowdown, performance of memory encryption, and micro-architecture impact on trusted execution performance) to demonstrate how the ability to simulate TEEs can provide useful information about their behavior in the existing form and also with enhanced designs. 
    more » « less
  3. null (Ed.)
    Scientific computing sometimes involves computation on sensitive data. Depending on the data and the execution environment, the HPC (high-performance computing) user or data provider may require confidentiality and/or integrity guarantees. To study the applicability of hardware-based trusted execution environments (TEEs) to enable secure scientific computing, we deeply analyze the performance impact of general purpose TEEs, AMD SEV, and Intel SGX, for diverse HPC benchmarks including traditional scientific computing, machine learning, graph analytics, and emerging scientific computing workloads. We observe three main findings: 1) SEV requires careful memory placement on large scale NUMA machines (1×– 3.4× slowdown without and 1×–1.15× slowdown with NUMA aware placement), 2) virtualization—a prerequisite for SEV— results in performance degradation for workloads with irregular memory accesses and large working sets (1×–4× slowdown compared to native execution for graph applications) and 3) SGX is inappropriate for HPC given its limited secure memory size and inflexible programming model (1.2×–126× slowdown over unsecure execution). Finally, we discuss forthcoming new TEE designs and their potential impact on scientific computing. 
    more » « less
  4. null (Ed.)
    Science DMZs are specialized networks that enable large-scale distributed scientific research, providing efficient and guaranteed performance while transferring large amounts of data at high rates. The high-speed performance of a Science DMZ is made viable via data transfer nodes (DTNs), therefore they are a critical point of failure. DTNs are usually monitored with network intrusion detection systems (NIDS). However, NIDS do not consider system performance data, such as network I/O interrupts and context switches, which can also be useful in revealing anomalous system performance potentially arising due to external network based attacks or insider attacks. In this paper, we demonstrate how system performance metrics can be applied towards securing a DTN in a Science DMZ network. Specifically, we evaluate the effectiveness of system performance data in detecting TCP-SYN flood attacks on a DTN using DBSCAN (a density-based clustering algorithm) for anomaly detection. Our results demonstrate that system interrupts and context switches can be used to successfully detect TCP-SYN floods, suggesting that system performance data could be effective in detecting a variety of attacks not easily detected through network monitoring alone. 
    more » « less
  5. This article describes experiences and lessons learned from the Trusted CI project, funded by the US National Science Foundation (NSF) to serve the community as the NSF Cybersecurity Center of Excellence (CCoE). Trusted CI is an effort to address cybersecurity for the open science community through a single organization that provides leadership, training, consulting, and knowledge to that community. The article describes the experiences and lessons learned of Trusted CI regarding both cybersecurity for open science and managing the process of providing centralized services to a broad and diverse community. 
    more » « less